Modulation of Muscle Insulin Resistance by Selective Inhibition of Glycogen Synthase Kinase-3 in Zucker Diabetic Fatty Rats

Erik J. Henriksen¹, Tyson R. Kinnick¹, Mary K. Teachey¹, Matthew P. O’Keefe¹, David Ring², Kirk W. Johnson², and Stephen D. Harrison²

¹Muscle Metabolism Laboratory, Department of Physiology, University of Arizona College of Medicine, Tucson, AZ 85721-0093, and ²Chiron Corporation, Emeryville, CA 94608

Running title: GSK-3 inhibition and muscle insulin resistance

Corresponding author: Erik J. Henriksen, Ph.D.
Department of Physiology
Ina E. Gittings Building #93
University of Arizona
Tucson, AZ 85721-0093
Tel: (520) 621-4104
FAX: (520) 621-8170
e-mail: ejhenrik@u.arizona.edu
A role for elevated glycogen synthase kinase-3 (GSK-3) activity in the multifactorial etiology of insulin resistance is now emerging. However, the utility of specific GSK-3 inhibition in modulating insulin resistance of skeletal muscle glucose transport is not yet fully understood. Therefore, we assessed the effects of novel, selective organic inhibitors of GSK-3 (CT98014 and CT98023) on glucose transport in insulin-resistant muscles of Zucker diabetic fatty (ZDF) rats. Incubation of type Iib epitrochlearis and type I soleus muscles from ZDF rats with CT98014 increased glycogen synthase (GS\textsubscript{i}) activity (49% and 50%, respectively, p<0.05), but did not alter basal glucose transport (2-deoxyglucose uptake). In contrast, CT98014 significantly increased the stimulatory effects of both submaximal and maximal insulin concentrations in epitrochlearis (37% and 24%) and soleus (43% and 26%), and these effects were associated with increased cell-surface GLUT-4 protein. Lithium enhanced GS activity and both basal and insulin-stimulated glucose transport in muscles from ZDF rats. Acute oral administration (2 X 30 mg/kg) of CT98024 to ZDF rats caused elevations in GSK-3 inhibitor concentrations in plasma and muscle. The glucose and insulin responses during a subsequent oral glucose tolerance test were reduced by 26% and 34%, respectively, in the GSK-3 inhibitor-treated animals. Thirty minutes after the final GSK-3 inhibitor treatment, insulin-stimulated glucose transport was significantly enhanced in epitrochlearis (57%) and soleus (43%). Two hours after the final treatment, insulin-mediated glucose transport was still significantly elevated (26%) only in the soleus. These results indicate that specific inhibition of GSK-3 enhances insulin action on glucose transport in skeletal muscle of insulin-resistant ZDF rat. This unique approach may hold promise as a pharmacological treatment against insulin resistance of skeletal muscle glucose disposal.

Key words: type 2 diabetes, glucose transport, epitrochlearis, soleus, cell-surface GLUT-4, lithium
Insulin resistance of skeletal muscle glucose transport and metabolism is considered to be one of the primary defects underlying the development of glucose intolerance and type 2 diabetes (reviewed in ref. 38). The insulin resistance and the accompanying hyperinsulinemia are closely associated with a number of additional atherogenic risk factors, including hypertension, dyslipidemia, and central obesity, collectively referred to as “syndrome X” (25, 26) or the “insulin resistance syndrome” (9). Therefore, developing strategies to overcome the insulin resistance of skeletal muscle glucose transport is an important step in treating type 2 diabetes.

Glycogen synthase kinase-3 (GSK-3), a serine/threonine kinase which consists of highly homologous α and β isoforms (36), functions to phosphorylate and inactivate glycogen synthase (24, 28, 37). GSK-3 activity can be acutely inactivated by insulin signaling through insulin receptor substrate-1 (IRS-1), phosphatidylinositol-3-kinase (PI3-kinase), and ultimately via the action of protein kinase B (Akt) to phosphorylate specific serine residues on the enzyme (7). An additional substrate of GSK-3 is IRS-1, and phosphorylation of IRS-1 on serine/threonine residues leads to impairment of insulin signaling (10). Therefore, GSK-3 can be a negative modulator of insulin action on glycogen synthase (GS) and, potentially, on glucose transport activity.

While the etiology of skeletal muscle insulin resistance is multifactorial (38), recent evidence supports a role of elevated GSK-3 as a contributing factor in this pathophysiological state (2, 11, 19, 21, 22). GSK-3 is elevated in tissues of insulin-resistant obese rodent models (2, 11) and in skeletal muscle of obese humans (2) and type 2 diabetic humans (22). Moreover, the elevation in GSK-3 protein in skeletal muscle of type 2 diabetic subjects is negatively correlated with both insulin-stimulated skeletal muscle GS activity and whole-body glucose disposal (22). Finally, lithium ions, a non-competitive and relatively non-selective inhibitor of GSK-3 with a K_i in the millimolar range (8, 16, 18, 32), can enhance both insulin-independent and insulin-dependent glucose transport in skeletal muscle from insulin-sensitive rats (34). Taken collectively, these findings are consistent with GSK-3 as a potential target of inhibition for the enhancement of insulin-stimulated glucose transport in insulin-resistant skeletal muscle.
Recently, a class of novel and selective organ inhibitors of GSK-3 have been developed (27) and have shown promise as modulators of GS activity, glucose disposal, and glucose transport activity in diabetic rodent models (27) and in human muscle cells (21). These compounds are substituted aminopyrimidine molecules and act as potent competitive inhibitors (acting at the ATP-binding site) of human GSK-3 \((K_i < 10 \text{ nM})\) with at least 500-fold selectivity against twenty other protein kinases (27). The purposes of the present investigation are 1) to compare the in vitro effects of a novel, selective organic inhibitor of GSK-3 (CT98014) and lithium ions on basal and insulin-stimulated GS activity and glucose transport activity in type I (soleus) and type IIb (epitrochlearis) skeletal muscle of insulin-sensitive lean Zucker (Fa/-) and insulin-resistant Zucker diabetic fatty (ZDF) rats, the latter being a model of type 2 diabetes; 2) to assess whether any improvement of muscle glucose transport activity due to this GSK-3 inhibitor is associated with enhanced cell-surface GLUT-4 protein; and 3) to determine the effect of the acute oral administration of a GSK-3 inhibitor (CT98023) to ZDF rats on glucose tolerance and skeletal muscle glucose transport activity.

METHODS

Animals. Male Zucker Diabetic Fatty (ZDF/Gmi-fa) rats were obtained from Genetic Models, Inc. (Indianapolis, IN) and lean Zucker rats were purchased from Harlan (Indianapolis, IN) at the age of 8-9 weeks, and used in the experiments at 10 weeks of age. At the time of their use, the ZDF rats weighed 300-340 g, whereas the age-matched lean Zucker rats weighed 180-210 g. Lean animals were maintained on regular lab chow (Purina, St. Louis, MO), while ZDF animals had free access to diabetogenic chow (Purina 5008). All procedures were approved by the University of Arizona Animal Use and Care Committee.

In vitro treatments of skeletal muscle. Following an overnight fast, animals were deeply anesthetized with an i.p. injection of pentobarbital sodium (50 mg/kg), and intact epitrochlearis muscles and strips of soleus muscles (~25 mg) were prepared for in vitro incubation in the unmounted state. Each muscle was incubated for 1 hr at 37°C in 3 ml oxygenated (95% O\textsubscript{2}-5%
CO₂) Krebs-Henseleit buffer (KHB) with the NaHCO₃ concentration set at 14 mM. This KHB was supplemented with 8 mM glucose, 32 mM mannitol, 0.1% BSA (radioimmunoassay grade, Sigma Chemical), 0.5% dimethyl sulfoxide, and the indicated additions of GSK-3 inhibitor, insulin, or lithium chloride. Thereafter, the muscles were used for the determination of glucose transport activity (as assessed using 2-doxyglucose uptake) or glycogen synthase activity as described below.

Oral administration of GSK-3 inhibitor. Animals were fasted after 6 PM of the evening before the test. At 8 AM and then again at 11:30 AM, the animals received by gavage either vehicle (1% CMC/0.1% Tween) or a bolus of GSK-3 inhibitor CT98023 at a dose of 30 mg/kg body weight. Thirty min after the second administration, some animals underwent an oral glucose tolerance test (OGTT). These animals received a 2 g/kg body weight glucose load by gavage. Blood was collected from a small cut at the tip of the tail immediately before and at 30, 60, 90 and 120 minutes after glucose administration, thoroughly mixed with EDTA (final concentration of 18 mg/ml), and centrifuged at 13,000 X g to isolate the plasma. The plasma was stored at -80°C and subsequently assayed for glucose (Sigma Chemical, St. Louis, MO) and insulin by radioimmunoassay (Linco, St. Louis, MO).

Other animals were used for the in vitro assessment of insulin-stimulated glucose transport activity in skeletal muscle. At the indicated times after the final bolus of vehicle of GSK-3 inhibitor, the animals were deeply anesthetized with pentobarbital sodium and epitrochlearis muscles and soleus strips were prepared. All muscles were then incubated as described above for 60 min in KHB in the absence or presence of the indicated concentration of insulin. Thereafter, glucose transport activity was assessed as described below. At the time of muscle dissection, samples of plasma and soleus and plantaris muscles were taken and frozen in liquid nitrogen for the determination of GSK-3 inhibitor levels by high performance liquid chromatography and mass spectroscopy.

Glycogen synthase activity. Glycogen synthase was assayed essentially as described by Thomas et al. (35), with slight modifications (15). Muscles were homogenized in a Duall tube
containing 2 ml of ice-cold 50 mM Tris buffer (pH 7.8), 100 mM KF, 10 mM EDTA, 2 mM EGTA, and 2 mM KH$_2$PO$_4$ at 4°C. The homogenates were centrifuged at 13,000 g for 15 min. An aliquot (30 µl) of the supernatant was added to 60 µl of 50 mM Tris buffer (pH 7.8), 20 mM EDTA, 25 mM KF, 10 mg/ml rabbit liver glycogen, and 5 mM UDP-[U-14C] glucose (150 µCi/mmol), and incubated for 20 minutes at 30°C without glucose-6-phosphate (GS$_1$ activity). Total GS activity was assessed in the presence of 5 mM glucose-6-phosphate.

Muscle glucose transport activity. Following the initial incubation period, the muscles were rinsed for 10 min at 37°C in 3 ml oxygenated KHB containing 40 mmol/l mannitol, 0.1% BSA, and any addition present previously. Thereafter, the muscles were transferred to 2 ml KHB, containing 1 mM 2-deoxy-[1,2-3H] glucose (300 mCi/mmol; Sigma), 39 mM [U-14C] mannitol (0.8 mCi/mmol; ICN Radiochemicals, Irvine, CA), 0.1% BSA, and any additions present previously. At the end of this final 20 minute incubation period at 37°C, the muscles were removed, trimmed of excess fat and connective tissue, quickly frozen between aluminum blocks cooled in liquid nitrogen, and weighed. The frozen muscles were dissolved in 0.5 ml 0.5N NaOH. After the muscles were completely solubilized, 5 ml of scintillation cocktail was added, and the specific intracellular accumulation of 2-DG was determined as described previously (14). This method for assessing glucose transport activity in isolated muscle has been validated (12).

Statistical analysis. All data are presented as means ± SE. The significance of differences between multiple groups was assessed by a factorial ANOVA with a post hoc Fisher’s PLSD test (StatView version 5.0, SAS Institute Inc., Cary, NC). Differences between two groups were determined by an unpaired Student’s t test. A p-value of less than 0.05 was considered to be statistically significant.

RESULTS

In vitro effects GSK-3 inhibitor CT98014 or lithium on GS activity. We initially determined the effectiveness of CT98014 in inhibiting GSK-3 in isolated skeletal muscle preparations, using an increase in GS$_1$ activity as the biomarker. As shown in Fig. 1, 500 nM
CT98014 caused increases of 51% and 48% in GS_I activity in the epitrochlearis and soleus muscles, respectively, of the lean Zucker rat. These increases due to CT98014 were comparable to those elicited by 2 mU/ml insulin in these muscles (47% and 78%). The effects of CT98014 and insulin on activation of GS_I in these muscles of the lean Zucker rats were completely additive. The total activity of GS was not altered in these muscles due to the interventions (data not shown).

Insulin elicited small, but significant, increases in the GS_I activity of epitrochlearis (24%) and soleus (23%) muscles of the ZDF rat, reflecting the insulin-resistant state of these muscles. In contrast, CT98014 elicited a completely normal activation of GS_I in these insulin-resistant muscles (49% and 50%). Moreover, when CT98014 and insulin were present in combination, the activation of GS was substantially more than could be accounted for by summing the individual effects of the stimuli in the epitrochlearis (0.776 nmol/mg/min vs. theoretical additive value of 0.662) and the soleus (1.31 vs. 1.11). The total activity of GS was again not altered due to the interventions (data not shown). The total GS activities in the epitrochlearis (1.69 ± 0.04 vs. 1.26 ± 0.05 nmol/mg muscle/min) and soleus (2.41 ± 0.06 vs. 1.63 ± 0.05 nmol/mg muscle/min) were significantly greater in ZDF rats compared to lean Zucker rats, consistent with previous findings in the obese Zucker rat (30).

The effects of 10 mM lithium on the GS_I activity in muscle from lean Zucker and ZDF rats are shown in Fig. 2. Lithium significantly activated GS_I in epitrochlearis and soleus muscles of the lean Zucker rat (86% and 38%) and the ZDF rat (71% and 86%). As was the case with CT98014, when lithium was combined with insulin, there was a completely additive interaction on GS_I activation in muscle from the lean Zucker rat and a synergistic interaction on GS activation in epitrochlearis (1.01 vs. theoretical additive value of 0.846) and soleus muscles (1.59 vs. 1.45) of the ZDF rat.

In vitro effects of GSK-3 inhibitor CT98014 or lithium on glucose transport activity. CT98014 (500 nM) had no effect on basal glucose transport or on submaximally or maximally insulin-stimulated glucose transport activity in epitrochlearis and soleus muscle from the lean
Zucker rat (Fig. 3). In contrast, 10 mM lithium elicited significant increases in both basal glucose transport and insulin-stimulated glucose transport activity in skeletal muscle from the lean Zucker rats.

CT98014 at 500 nM also did not cause an activation of basal glucose transport in skeletal muscle of the ZDF rats, whereas 10 mM lithium alone stimulated basal glucose transport in both epitrochlearis and soleus muscles of these insulin-resistant animals (Fig. 4). Importantly, 500 nM CT98014 caused significant enhancements of glucose transport activity in the presence of submaximally effective (37% and 43%) and maximally effective (24% and 27%) concentrations of insulin in epitrochlearis and soleus (27) muscles of ZDF rats. These significant effects of CT98014 on insulin-stimulated glucose transport activity in muscle of the ZDF rat were observed at concentrations as low as 100 nM, with no greater maximal effects with concentrations as high as 1 µM (data not shown). Lithium at 10 mM also significantly enhanced glucose transport activity in ZDF muscle incubated with submaximally- and maximally-effective insulin concentrations, though most of this effect could be attributed to the activation of basal glucose transport (Fig. 4).

In vitro effects GSK-3 inhibitor CT98014 on cell-surface GLUT-4. In order to gain some insight into the molecular mechanism for the effects of CT98014 on glucose transport, we assessed the level of exofacial GLUT-4 protein, using the impermeable photolabel ATB-[³H]BMPA (Fig. 5). In the absence of insulin, CT98014 did not alter cell-surface GLUT-4 in either epitrochlearis or soleus muscles of the ZDF rat. Insulin caused significant increases in cell-surface GLUT-4 in these muscles. Moreover, the insulin-stimulated increases in cell-surface GLUT-4 were significantly enhanced by CT98014 in both the epitrochlearis (29%) and the soleus (21%) muscles of the ZDF rat.

Effects of oral administration of GSK-3 inhibitor CT98023 on glucose tolerance. The acute oral administration of the GSK-3 inhibitor CT98023 (30 mg/kg body weight) led to substantial increases of the compound in plasma and skeletal muscle of the ZDF rats 30 min after completion of the treatments (Fig. 6), indicating that the metabolic actions of the compound in
vivo should not be limited by bioavailability. Thirty min after the completion of these treatments, an OGTT was performed and the responses of plasma glucose and insulin were assessed (Fig. 7). In vehicle-treated ZDF rats, the glucose feeding led to a large increase in plasma glucose at 30 min, and this glucose response was substantially reduced in the GSK-3 inhibitor-treated animals. The total glucose area under the curve (AUC) was 26% less in the GSK-3 inhibitor-treated ZDF rats compared to the vehicle-treated control group (Fig. 8). Moreover, the insulin response during the OGTT was also dramatically reduced in the GSK-3 inhibitor-treated group, and the total insulin AUC was 34% less in the GSK-3 inhibitor-treated ZDF rats compared to the control group. These decreases in the glucose and insulin responses of the OGTT following the GSK-3 inhibitor treatment were even more pronounced when the incremental AUCs for glucose (13620 ± 1216 vs. 6600 ± 644 mg/dl X min) and insulin (4290 ± 540 vs. 1020 ± 205 µU/ml X min) were calculated. The dose of GSK3 inhibitor used in this in vivo study (30 mg/kg) is maximally effective in enhancing oral glucose tolerance, as a higher dose (48 mg/kg) does not have any further effect (27).

The glucose-insulin index is defined as the product of the glucose and insulin AUCs, and a reduction in this value represents indirect evidence of improved in vivo peripheral insulin action (6). Following acute treatment with CT98023, the glucose-insulin index was reduced by 51% compared to the vehicle-treated group, consistent with an increase in whole-body insulin sensitivity. This decrease in the glucose-insulin index due to GSK-3 inhibition was also observed when the incremental AUCs were used (58 ± 12 vs. 7 ± 1 units X 10⁶).

Effects of oral administration of GSK-3 inhibitor CT98023 on muscle glucose transport.

In order to identify a potential cellular locus for the improved peripheral insulin sensitivity, insulin-stimulated glucose transport activity was determined in epitrochlearis and soleus muscles of the ZDF rats at various time points following the acute administration of CT98023 (Fig. 9). Thirty min after the completion of the oral GSK-3 inhibitor treatment, the maximal insulin-mediated increase in glucose transport activity was enhanced in both the epitrochlearis (56%) and soleus (43%) compared to the corresponding control groups. At this same time point, glucose
transport activity due to a sub-maximally effective concentration of insulin (150 µU/ml) was similarly enhanced in these muscles from the CT98023-treated ZDF rats (data not shown). Two hr after the oral administration of CT98023, the enhanced action of the maximally-effective concentration of insulin was still detectable in the soleus muscle (26%), but not in the epitrochlearis muscle, consistent with the diminished glucose-lowering effect of the treatment at this time point (Fig. 7). The enhanced insulin action on glucose transport activity due to the GSK-3 inhibitor treatment was no longer detectable in the soleus after 4 hr.

DISCUSSION

We have demonstrated in the present investigation that the selective inhibition of GSK-3 in insulin-resistant skeletal muscle of the ZDF rat was associated with a potentiation of the ability of insulin to stimulate both GS activity (Fig. 1) and glucose transport activity (Fig. 3). These effects of the GSK-3 inhibitor CT98014 were elicited at concentrations in the nanomolar range, with maximal effects at 500 nM. Interestingly, although the GSK-3 inhibitor CT98014 clearly activated GS activity in skeletal muscle from the insulin-sensitive lean Zucker rat (Fig. 1), it had absolutely no effect on either basal or insulin-stimulated glucose transport activity in muscle from these lean animals. These results support the idea that an elevation in GSK-3 activity, which exists in muscle of the ZDF rat but not the lean rat (2), is necessary for a cell to respond to GSK-3 inhibition for enhancement of insulin-stimulated glucose transport activity.

These results demonstrating a potentiation of in vitro insulin action on GS and glucose transport in rat muscle by selective GSK-3 inhibition are in agreement with the recent findings of Nikoulina et al. (21), who showed in cultured human myocytes that these same GSK-3 inhibitors, when administered acutely (30 min), can upregulate insulin-stimulated GS activity, and when administered chronically (4 days), can enhance insulin-mediated glucose transport activity. Interestingly, these investigators also demonstrated that chronic treatment of cultured human muscle cells with GSK-3 inhibitor caused a down regulation of GSK-3 protein expression and activity and a large upregulation of IRS-1 protein level. Whether the chronic administration
of GSK-3 inhibitor causes similar effects in insulin-resistant muscle from rodent models or humans remains to be determined.

At least part of the beneficial effect of the GSK-3 inhibitor CT98014 on insulin-stimulated glucose transport activity in skeletal muscle of the ZDF rat was due to an enhancement of GLUT-4 protein at the cell-surface (Fig. 5). This is in contrast to the finding that the non-specific GSK-3 inhibitor lithium did not enhance insulin-stimulated GLUT-4 translocation in 3T3-L1 adipocytes overexpressing GSK-3β (33). The underlying molecular mechanism for the increased GLUT-4 translocation in response to the GSK-3 inhibition in insulin-resistant skeletal muscle was not addressed in the present study. However, it is known that intact activation of PI3-kinase by tyrosine-phosphorylated IRS-1 is necessary for this insulin-stimulated GLUT-4 translocation to take place (reviewed in ref. 38). As GSK-3 is known to inhibit IRS-1 action by serine/threonine phosphorylation (10), one possibility for the beneficial effect of the GSK-3 inhibitor is through a disinhibition of IRS-1 functionality, with a subsequent enhancement of PI3-kinase activity and increased GLUT-4 translocation. It is clear that this would be a fruitful area for future investigations.

We also compared the metabolic effects of lithium, which has been used previously as an inhibitor of GSK-3, with those of the more selective GSK-3 inhibitor CT98014 (Figs. 1-4). Both lithium (at 10 mM) and CT98014 (at 500 nM) elicited enhancement of GS activity in muscle from lean Zucker and ZDF rats, and displayed an additive interaction with insulin for stimulation of GS activity in muscle from lean animals. This additivity between lithium and insulin for activation of GS in insulin-sensitive cells is consistent with previous studies (3, 6, 23, 33). Moreover, lithium and CT98014 both displayed a synergistic interaction with insulin for stimulation of GS activity and glucose transport activity in muscle from ZDF rats. However, there were some striking differences between lithium and CT98014 concerning stimulation of glucose transport activity. Although C98014 had no effects on glucose transport activity in the absence of insulin in both the lean Zucker and the ZDF groups or on insulin-stimulated glucose transport activity in the lean group, lithium caused an increase in basal glucose transport in both
groups and in insulin-stimulated glucose transport activity in the lean group. Whereas lithium can certainly inhibit GSK-3, this ion obviously has additional effects that must account for its actions on basal and insulin-stimulated glucose transport in insulin-sensitive skeletal muscle and on basal glucose transport activity in insulin-resistant skeletal muscle. Therefore, one must exercise caution in using lithium as an inhibitor of GSK-3 in skeletal muscle studies, as other effects of this ion apart from those on GSK-3 may confound interpretation of the results.

There were some important differences in the glucose transport responses of the epitrochlearis, which consists of primarily type IIb fibers (20, 29), and the soleus, which consists of mainly type I fibers (1), to the GSK-3 inhibitor CT98014 (Fig. 4). The absolute increase in insulin-stimulated glucose transport activity due to GSK-3 inhibition was 34-37 pmol/mg/20 min in the epitrochlearis, while in the soleus this increase was substantially greater (122-126 pmol/mg/20 min). This greater response to GSK-3 inhibition in the soleus may reflect the fact that type I fibers express a much higher level of insulin signaling factors (31) and GLUT-4 protein (13, 17) than type IIb fibers, and therefore may have a higher capacity for insulin signaling once inhibition of one of these factors (e.g. GSK-3 inhibition of IRS-1 (10)) is removed.

The oral administration of GSK-3 inhibitors to the insulin-resistant ZDF rat also elicited improvements in glucose metabolism. The disposal of an oral glucose load by the ZDF rats acutely treated with the GSK-3 inhibitor CT98023 was markedly enhanced compared to the vehicle-treated animals (Figs 7 and 8). One potential cellular locus for this increased glucose disposal was skeletal muscle, as insulin-stimulated glucose transport activity in both the epitrochlearis and the soleus was substantially increased at the 30 min time point, when the glucose response during the OGTT was maximally reduced (Fig. 7). Indeed, at the 120 min time point following the final administration of the GSK-3 inhibitor, the enhancement of insulin-stimulated glucose transport activity was no longer observed in the epitrochlearis and was substantially diminished in the soleus (Fig. 9), while at this same time point the glucose levels during the OGTT were not different between the GSK-3 inhibitor-treated and vehicle-treated control animals (Fig. 7). This apparent reversibility of the GSK-3 inhibition is consistent with
the observation that removal of the compound from tumor cells causes β-catenin levels to decrease (Harrison, S.D., unpublished data).

One additional potential site of action of GSK-3 inhibitors that could contribute to an improvement in whole-body glucose homeostasis is the liver (4, 19). Cline et al. (4) have recently reported that treatment of ZDF rats with the selective GSK-3 inhibitor CT98023 significantly enhances GS activity and glycogen synthesis in the liver. Moreover, Lochhead et al. (19) have demonstrated that the selective reduction of GSK-3 activity in rat hepatoma cells by treatment with lithium or cell-permeable small molecular weight compounds (SB216763 and SB-415286) (5) is associated with a reduction in the expression of the gluconeogenic enzymes phosphoenolpyruvate carboxykinase and glucose-6-phosphatase. Therefore, an enhancement of hepatic glycogen synthesis and a reduction in hepatic glucose output likely contribute to the glucose-lowering effect of GSK-3 inhibitors in rodent models of type 2 diabetes (27).

In summary, we have demonstrated that direct in vitro exposure of insulin-resistant type I and type IIb skeletal muscle from the ZDF rat to a novel, selective organic inhibitor of GSK-3 can potentiate the action of insulin to stimulate GS activity and glucose transport. While lithium also potentiated insulin-stimulated GS activity and glucose transport in insulin-resistant muscle, it additionally elicited effects on basal glucose transport and on insulin-stimulated glucose transport in muscle from lean Zucker rats that were not affected by the selective GSK-3 inhibitor. The effect of the GSK-3 inhibitor on insulin-stimulated glucose transport in skeletal muscle from the ZDF rat was due, at least in part, to an enhanced cell-surface GLUT-4 protein level. Moreover, the acute oral administration of a selective GSK-3 inhibitor caused a significant improvement in whole-body glucose disposal and insulin sensitivity that was associated with enhanced skeletal muscle glucose transport activity. This novel approach using selective organic GSK-3 inhibitors appears useful as a pharmacological treatment against insulin resistance of skeletal muscle glucose disposal.
Acknowledgements. The authors wish to thank Melanie B. Schmit, Stephen A. Miller, Thomas Maier, and Julie A. Sloniger for excellent technical assistance. The research was support by a grant from Chiron Corporation (to E.J.H.) and the American Diabetes Association (to E.J.H.).
REFERENCES

Figure Legends.

Fig. 1. Interactions of insulin and GSK-3 inhibitor CT98014 on glycogen synthase (GS$_1$) activity in skeletal muscle of lean Zucker and ZDF rats. Epitrochlearis and soleus muscles were incubated with 2 mU/ml insulin and 500 nM CT98014 for 60 min. Values are means ± SE for 5 muscles per group. * p<0.05 vs. control group; # p<0.05 vs. all other groups.

Fig. 2. Interactions of insulin and lithium on glycogen synthase (GS$_1$) activity in skeletal muscle of lean Zucker and ZDF rats. Epitrochlearis and soleus muscles were incubated with 2 mU/ml insulin and 10 nM lithium for 60 min. Values are means ± SE for 5 muscles per group. * p<0.05 vs. control group; # p<0.05 vs. all other groups.

Fig. 3. Effects of GSK-3 inhibitor CT98014 or lithium on glucose transport activity in skeletal muscle of lean Zucker rats. Epitrochlearis and soleus muscles were incubated with 2 mU/ml insulin and 500 nM CT98014 or 10 mM LiCl for 60 min. Values are means ± SE for 5 muscles per group. Soleus data with CT98014 are adapted from Ring et al. (27). * p<0.05 vs. minus lithium group.

Fig. 4. Effects of GSK-3 inhibitor CT98014 or lithium on glucose transport activity in skeletal muscle of ZDF rats. Epitrochlearis and soleus muscles were incubated with 500 nM CT98014 or 10 mM lithium for 60 min. Values are means ± SE for 5 muscles per group. Soleus data with CT98014 are adapted from Ring et al. (27). * p<0.05 vs. minus CT98014 or minus lithium group.
Fig. 5. Effect of GSK-3 inhibitor CT98014 on cell surface GLUT-4 in skeletal muscle of ZDF rats. Epitrochlearis and soleus muscles were incubated with 500 nM CT98014 for 60 min. Values are means ± SE for 5 muscles per group. * p<0.05 vs. control or plus CT98014 groups; # p<0.05 vs. plus insulin group.

Fig. 6. Levels of GSK-3 inhibitor CT98023 in plasma and skeletal muscle following acute oral administration. Bars represent the level of compound 30 min after the final oral treatment with 30 mg/kg CT98023. Values are means ± SE for 6 animals per group.

Fig. 7. Effect of GSK-3 inhibitor CT98023 on glucose and insulin responses during an oral glucose tolerance test in ZDF rats. Animals were treated twice with either vehicle (open circle) or 30 mg/kg body wt CT98023 (closed circle). Values are means ± SE for 6-7 animals per group. * p<0.05 vs. vehicle-treated control group at same time point.

Fig. 8. Effect of GSK-3 inhibitor CT98023 on glucose and insulin AUCs and the glucose-insulin index in ZDF rats. Values for the AUCs were calculated from the data presented in Fig. 7. The glucose-insulin index is calculated as the product of the glucose AUC and the insulin AUC for each animal. Values are means ± SE for 6-7 animals per group. * p<0.05 vs. vehicle-treated control group.

Fig. 9. Insulin-mediated glucose transport activity in epitrochlearis (A) and soleus (B) muscles at various times following acute oral administration of GSK-3 inhibitor CT98023 in ZDF rats. Values represent the increase above basal due to 5 mU/ml insulin. Values are means ± SE for 5-8 muscles per group. * p<0.05 vs. vehicle-treated control group.
Figure 1.

Glycogen Synthase (GS) Activity (nmol/mg/min)

Lean Epitrochlearis

ZDF Epitrochlearis

Lean Soleus

ZDF Soleus

Insulin (2 mU/ml)
- - + +
- - + +

CT98014 (500 nM)
- + - +
- + - +
Figure 2.

<table>
<thead>
<tr>
<th></th>
<th>Lean Epitrochlearis</th>
<th>Lean Soleus</th>
<th>ZDF Epitrochlearis</th>
<th>ZDF Soleus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glycogen Synthase (GS) Activity (nmol/mg/min)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Insulin (2 mU/ml)</td>
<td>−</td>
<td>−</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Lithium (10 mM)</td>
<td>−</td>
<td>+</td>
<td>−</td>
<td>+</td>
</tr>
</tbody>
</table>
Lean Epitrochlearis
Lean Soleus

2-Deoxyglucose Uptake (pmol/mg muscle/20 min)

Insulin (µU/ml):

Figure 3.
Figure 4.

<table>
<thead>
<tr>
<th>Insulin (µU/ml)</th>
<th>0</th>
<th>100</th>
<th>2000</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZDF Epitrochlearis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZDF Soleus</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2-Deoxyglucose Uptake (pmol/mg muscle/20 min)

- CT98014
- Lithium

![Data Bars](open)

* Significant difference
Figure 5.

ZDF Epitrochlearis

- Insulin (2 mU/ml) -
- CT98014 (500 nM) -

ZDF Soleus

- Insulin (2 mU/ml) -
- CT98014 (500 nM) -

ATB-[H]BMPA-GLUT-4 (dpm/mg muscle)
Figure 6.
Figure 7.
Figure 8.

- **Glucose AUC**: (mg/dl X min X 10^3)
- **Insulin AUC**: (µU/ml X min X 10^3)
- **Glucose-Insulin Index**: (units X 10^6)

<table>
<thead>
<tr>
<th>Condition</th>
<th>Glucose AUC</th>
<th>Insulin AUC</th>
<th>Glucose-Insulin Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>+ Vehicle</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>+ CT98023 (30 mg/kg)</td>
<td>*</td>
<td></td>
<td>*</td>
</tr>
<tr>
<td>+ Vehicle</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>+ CT98023 (30 mg/kg)</td>
<td>*</td>
<td></td>
<td>*</td>
</tr>
<tr>
<td>+ Vehicle</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>+ CT98023 (30 mg/kg)</td>
<td>*</td>
<td></td>
<td>*</td>
</tr>
</tbody>
</table>
Figure 9.

A

- ** Vehicle CT98023 (30 mg/kg)

- ** Vehicle CT98023 (30 mg/kg)

- ** Vehicle CT98023 (30 mg/kg)

0.5 Hour Post

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>50</th>
<th>100</th>
<th>150</th>
<th>200</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5 Hour</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2 Hours Post

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>100</th>
<th>200</th>
<th>300</th>
<th>400</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 Hours</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4 Hours Post

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>100</th>
<th>200</th>
<th>300</th>
<th>400</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 Hours</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

** Insulin-mediated Increase in 2-Deoxyglucose Uptake (pmol/mg muscle/20 min)

B

- ** Vehicle CT98023 (30 mg/kg)

- ** Vehicle CT98023 (30 mg/kg)

- ** Vehicle CT98023 (30 mg/kg)

0.5 Hour Post

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>100</th>
<th>200</th>
<th>300</th>
<th>400</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5 Hour</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2 Hours Post

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>100</th>
<th>200</th>
<th>300</th>
<th>400</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 Hours</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4 Hours Post

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>100</th>
<th>200</th>
<th>300</th>
<th>400</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 Hours</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

** Insulin-mediated Increase in 2-Deoxyglucose Uptake (pmol/mg muscle/20 min)